Neutralization — Corona Virus — THE GREEN INSTITUTE

Neutralization

Antibody-mediated synergy and interference in the neutralization of SARS-CoV at an epitope cluster on the spike protein

Biochemical and Biophysical Research Communications
Volume 390, Issue 3, 18 December 2009, Pages 1056-1060

Lilin Zhong, Lia Haynes, Evi Budo Struble, Azaibi Tamin, Maria Luisa Virata-Theimer, Pei Zhang.

Abstract

Incomplete neutralization of virus, especially when it occurs in the presence of excess neutralizing antibody, represents a biological phenomenon that impacts greatly on antibody-mediated immune prophylaxis of viral infection and on successful vaccine design. To understand the mechanism by which a virus escapes from antibody-mediated neutralization, we have investigated the interactions of non-neutralizing and neutralizing antibodies at an epitope cluster on the spike protein of severe acute respiratory syndrome coronavirus (SARS-CoV). The epitope cluster was mapped at the C-terminus of the spike protein; it consists of structurally intertwined epitopes recognized by two neutralizing monoclonal antibodies (mAbs), 341C and 540C, and a non-neutralizing mAb, 240C. While mAb 341C binds to a mostly linear epitope composed of residues 507PAT509 and V349, mAb 240C binds to an epitope that partially overlaps the former by at least two residues (P507 and A508). The epitope corresponding to mAb 540C is a conformational one, involving residues L504 and N505. In neutralization assays, non-neutralizing 240C disrupted virus neutralization by mAb 341C and/or mAb 540C, whereas a combination of mAbs 341C and 540C blocked virus infectivity synergistically. These findings indicate that the epitope cluster on the spike protein may serve as an evolutionarily conserved platform at which a dynamic interplay between neutralizing and non-neutralizing antibodies occurs, thereby determining the outcome of SARS-CoV infection.

Keywords

SARS-CoV, Monoclonal antibody, Neutralization, Epitope