SARS coronavirus

How blood from coronavirus survivors might save lives

Nature

Maxmen, A.

News

Hospitals in New York City are gearing up to use the blood of people who have recovered from COVID-19 as a possible antidote for the disease. Researchers hope that the century-old approach of infusing patients with the antibody-laden blood of those who have survived an infection will help the metropolis — now the US epicentre of the outbreak — to avoid the fate of Italy, where intensive-care units (ICUs) are so crowded that doctors have turned away patients who need ventilators to breathe.

Keywords

Normative guidance; Clinical aspects, diagnosis, treatment

A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2

Antiviral Research
Volume 94, Issue 3, June 2012, Pages 288-296

Anna-WinonaStruck, Marco Axmanna, Susanne Pfefferle, ChristianDrosten, Bernd Meyera

Abstract

In vitro infection of Vero E6 cells by SARS coronavirus (SARS-CoV) is blocked by hexapeptide Tyr-Lys-Tyr-Arg-Tyr-Leu. The peptide also inhibits proliferation of coronavirus NL63. On human cells both viruses utilize angiotensin-converting enzyme 2 (ACE2) as entry receptor. Blocking the viral entry is specific as alpha virus Sindbis shows no reduction in infectivity. Peptide 438YKYRYL443 is part of the receptor-binding domain (RBD) of the spike protein of SARS-CoV. Peptide libraries were screened by surface plasmon resonance (SPR) to identify RBD binding epitopes. 438YKYRYL443 carries the dominant binding epitope and binds to ACE2 with KD = 46 μM. The binding mode was further characterized by saturation transfer difference (STD) NMR spectroscopy and molecular dynamic simulations. Based on this information the peptide can be used as lead structure to design potential entry inhibitors against SARS-CoV and related viruses.

Keywords

SARS coronavirus, Spike protein, ACE2, Entry inhibitor, Virus proliferation assay, SPR screening

Development and evaluation of an efficient 3′-noncoding region based SARS coronavirus (SARS-CoV) RT-PCR assay for detection of SARS-CoV infections

Journal of Virological Methods
Volume 120, Issue 1, 1 September 2004, Pages 33-40

Huo-Shu H Houng, David Norwood, George V Ludwig, Wellington Sun, Minta Lin, David W Vaughn

Abstract

The severe acute respiratory syndrome (SARS) epidemic originating from China in 2002 was caused by a previously uncharacterized coronavirus that could be identified by specific RT-PCR amplification. Efforts to control future SARS outbreaks depend on the accurate and early identification of SARS-CoV infected patients. A real-time fluorogenic RT-PCR assay based on the 3′-noncoding region (3′-NCR) of SARS-CoV genome was developed as a quantitative SARS diagnostic tool. The ideal amplification efficiency of a sensitive SARS-CoV RT-PCR assay should yield an E value (PCR product concentration increase per amplification cycle) equal to 2.0. It was demonstrated that the 3′-NCR SARS-CoV based RT-PCR reactions could be formulated to reach excellent E values of 1.81, or 91% amplification efficacy. The SARS-CoV cDNA preparations derived from viral RNA extract and the cloned recombinant plasmid both exhibit the identical amplification characteristics, i.e. amplification efficacy using the same PCR formulation developed in this study. The viral genomic copy (or genomic equivalences, GE) per infectious unit (GE/pfu) of SARS-CoV used in this study was also established to be approximate 1200–1600:1. The assay’s detection sensitivity could reach 0.005 pfu or 6–8 GE per assay. It was preliminarily demonstrated that the assay could efficiently detect SARS-CoV from clinical specimens of SARS probable and suspected patients identified in Taiwan. The 3′-NCR based SARS-CoV assay demonstrated 100% diagnostic specificity testing samples of patients with acute respiratory disease from a non-SARS epidemic region.

Keywords

Severe acute respiratory syndrome, SARS coronavirus, Real-time RT-PCR, Quantitative RT-PCR, 3′-Noncoding region.