Can chlorine dioxide prevent the spreading of coronavirus or other viral infections? Medical hypotheses

Physiology international
Pages 1-11

Kaly-Kullai, K.; Wittmann, M.; Noszticzius, Z.; Rosivall, L.

Introduction

Viruses have caused many epidemics throughout human history. The novel coronavirus is just the latest example. A new viral outbreak can be unpredictable, and development of specific defense tools and countermeasures against the new virus remains time-consuming even in today's era of modern medical science and technology. In the lack of effective and specific medication or vaccination, it would be desirable to have a nonspecific protocol or substance to render the virus inactive, a substance/protocol, which could be applied whenever a new viral outbreak occurs. This is especially important in cases when the emerging new virus is as infectious as SARS-CoV-2

Keywords

COVID-19, SARS-CoV-2, Medication

Molecular immune pathogenesis and diagnosis of COVID-19

Journal of Pharmaceutical Analysis
5 March 2020

Xiaowei Li, Manman Geng, Yizhao Peng, Liesu Meng, Shemin Lu

Abstract

Coronavirus disease 2019 (COVID-19) is a kind of viral pneumonia with an unusual outbreak in Wuhan, China, in December 2019, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The emergence of SARS-CoV-2 has been marked as the third introduction of a highly pathogenic coronavirus into the human population after the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) in the twenty-first century. In this minireview, we provide a brief introduction of the general features of SARS-CoV-2 and discuss current knowledge of molecular immune pathogenesis, diagnosis and treatment of COVID-19 on the base of the present understanding of SARS-CoV and MERS-CoV infections, which may be helpful in offering novel insights and potential therapeutic targets for combating the SARS-CoV-2 infection.

Keywords

Coronavirus, SARS-CoV-2, SARS-CoV, MERS-CoV, Pathogenesis

Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths

Journal of Microbiology, Immunology and Infection
4 March 2020

Chih-Cheng Lai, Yen Hung Liu, Cheng-Yi Wang, Ya-Hui Wang, Shun-Chung Hsueh, Muh-Yen Yen, Wen-Chien Ko, Po-Ren Hsueh

Abstract

Since the emergence of coronavirus disease 2019 (COVID-19) (formerly known as the 2019 novel coronavirus [2019-nCoV]) in Wuhan, China in December 2019, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 75,000 cases have been reported in 32 countries/regions, resulting in more than 2000 deaths worldwide. Despite the fact that most COVID-19 cases and mortalities were reported in China, the WHO has declared this outbreak as the sixth public health emergency of international concern. The COVID-19 can present as an asymptomatic carrier state, acute respiratory disease, and pneumonia. Adults represent the population with the highest infection rate; however, neonates, children, and elderly patients can also be infected by SARS-CoV-2. In addition, nosocomial infection of hospitalized patients and healthcare workers, and viral transmission from asymptomatic carriers are possible. The most common finding on chest imaging among patients with pneumonia was ground-glass opacity with bilateral involvement. Severe cases are more likely to be older patients with underlying comorbidities compared to mild cases. Indeed, age and disease severity may be correlated with the outcomes of COVID-19. To date, effective treatment is lacking; however, clinical trials investigating the efficacy of several agents, including remdesivir and chloroquine, are underway in China. Currently, effective infection control intervention is the only way to prevent the spread of SARS-CoV-2.

Keywords

Coronavirus, 2019-nCoV, SARS-CoV-2, COVID-19, Asymptomatic carrier, Acute respiratory disease, Wuhan pneumonia

From SARS to COVID-19: A previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans – Call for a One Health approach

One Health
Volume 9, June 2020, 100124

Mohamed E. El Zowalaty, and Josef D. Järhult

Abstract

Human coronaviruses continue to pose a threat to human health. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 which causes coronavirus disease-2019 (COVID-19), an acute respiratory disease marked the third introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. This recent emergence of a previously unknown coronavirus in China leads to huge impacts on humans globally. Covid-19 is a challenge to global public health. Here, we discuss the COVID-19 outbreak in a one health context, highlighting the need for the implementation of one health measures and practices to improve human health and reduce the emergence of pandemic viruses.


The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak

Journal of Autoimmunity
Available online 26 February 2020, 102433

Hussin A. Rothan, and Siddappa N. Byrareddy

Abstract

Coronavirus disease (COVID-19) is caused by SARS-COV2 and represents the causative agent of a potentially fatal disease that is of great global public health concern. Based on the large number of infected people that were exposed to the wet animal market in Wuhan City, China, it is suggested that this is likely the zoonotic origin of COVID-19. Person-to-person transmission of COVID-19 infection led to the isolation of patients that were subsequently administered a variety of treatments. Extensive measures to reduce person-to-person transmission of COVID-19 have been implemented to control the current outbreak. Special attention and efforts to protect or reduce transmission should be applied in susceptible populations including children, health care providers, and elderly people. In this review, we highlights the symptoms, epidemiology, transmission, pathogenesis, phylogenetic analysis and future directions to control the spread of this fatal disease.

Keywords

Coronavirus, COVID-19, Wuhan city, Pneumonia, Pathogenesis

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges

International Journal of Antimicrobial Agents
Volume 55, Issue 3, March 2020, 105924

Chih-Cheng Lai, Tzu-Ping Shih, Wen-Chien Ko, Hung-Jen Tang, Po-Ren Hsueh

Abstract

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; previously provisionally named 2019 novel coronavirus or 2019-nCoV) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak and is a major public health issue. As of 11 February 2020, data from the World Health Organization (WHO) have shown that more than 43 000 confirmed cases have been identified in 28 countries/regions, with >99% of cases being detected in China. On 30 January 2020, the WHO declared COVID-19 as the sixth public health emergency of international concern. SARS-CoV-2 is closely related to two bat-derived severe acute respiratory syndrome-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. It is spread by human-to-human transmission via droplets or direct contact, and infection has been estimated to have mean incubation period of 6.4 days and a basic reproduction number of 2.24–3.58. Among patients with pneumonia caused by SARS-CoV-2 (novel coronavirus pneumonia or Wuhan pneumonia), fever was the most common symptom, followed by cough. Bilateral lung involvement with ground-glass opacity was the most common finding from computed tomography images of the chest. The one case of SARS-CoV-2 pneumonia in the USA is responding well to remdesivir, which is now undergoing a clinical trial in China. Currently, controlling infection to prevent the spread of SARS-CoV-2 is the primary intervention being used. However, public health authorities should keep monitoring the situation closely, as the more we can learn about this novel virus and its associated outbreak, the better we can respond.

Keywords

2019-nCoV, SARS-CoV-2, COVID-19, China, Epidemic, Remdesivir

Climate factors and incidence of Middle East respiratory syndrome coronavirus

Journal of Infection and Public Health
ARTICLE IN PRESS

Asmaa Altamimi, Anwar E. Ahmed

Abstract

Background

Our understanding of climate factors and their links to the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreaks is incomplete. This study aimed to estimate the monthly incidence of MERS-CoV cases and to investigate their correlation to climate factors.

Methods

The study used aggregated monthly MERS-CoV cases that reported to the Saudi Center for Disease Prevention and Control from the Riyadh Region between November 1, 2012 and December 31, 2018. Data on the meteorological situation throughout the study period was calculated based on Google reports on the Riyadh Region (24.7136 °N, 46.6753 °E). The Poisson regression was used to estimate the incidence rate ratio (IRR) and its 95% confidence intervals (CI) for each climate factor.

Results

A total of 712 MERS-CoV cases were included in the analysis (mean age 54.2 ± 9.9 years), and more than half (404) (56.1%) MERS-CoV cases were diagnosed during a five-month period from April to August. The highest peak timing positioned in August 2015, followed by April 2014, June 2017, March 2015, and June 2016. High temperatures (IRR = 1.054, 95% CI: 1.043–1.065) and a high ultraviolet index (IRR = 1.401, 95% CI: 1.331–1.475) were correlated with a higher incidence of MERS-CoV cases. However, low relative humidity (IRR = 0.956, 95% CI: 0.948–0.964) and low wind speed (IRR = 0.945, 95% CI: 0.912–0.979) were correlated with a lower incidence of MERS-CoV cases.

Conclusion

The novel coronavirus, MERS-CoV, is influenced by climate conditions with increasing incidence between April and August. High temperature, high ultraviolet index, low wind speed, and low relative humidity are contributors to increased MERS-CoV cases. The climate factors must be evaluated in hospitals and community settings and integrated into guidelines to serve as source of control measures to prevent and eliminate the risk of infection.

Keywords

Weather conditions, Meteorological factors, MERS-CoV

Genetic, Antigenic And Pathogenic Characterization Of Avian Coronaviruses Isolated From Pheasants (Phasianus Colchicus) In China

Veterinary Microbiology
Volume 240, January 2020, 108513

Han, ZongXi; Liwen, Xu; Ren, MengTing; Sheng, Jie; Ma, TianXin; Sun, JunFeng; Zhao, Yan; Liu, ShengWang

Abstract

Two viruses were isolated in 2017 from commercial pheasants with severe clinical signs and mortality in Shandong and Anhui provinces, China, respectively. We examined the pathogenic effects of the viruses in chicken embryos and the size and morphology of the virus particles, performed phylogenetic analysis based on the S1 gene and complete genomic sequences, and examined the antibody responses against infectious bronchitis virus (IBV). The results suggested that the viruses I0623/17 and I0710/17 were avian coronaviruses and were identified as pheasant coronaviruses (PhCoV), with greatest similarity to IBV. Further investigations of the antigenicity, complete genome organization, substitutions in multiple genes, and viral pathogenicity, replication, and shedding in chickens and pheasants showed obvious differences between PhCoV and IBV in terms of antigenicity, and viral pathogenicity, replication, and shedding in chickens and pheasants. The close genetic relationship, but obvious differences between PhCoVs and IBVs suggested the IBVs could be the ancestors of PhCoVs, and that PhCoVs isolated from different outbreaks may have evolved independently from IBVs circulating in the specific region by adaption in pheasants. This hypothesis was supported by analysis of the S1 gene fragments of the two PhCoVs isolated in the current study, as well as PhCoVs isolated in the UK and selected IBV strains. Such analyses indicated different evolution patterns and different tissue tropisms between PhCoVs isolated in different outbreaks. Further studies are needed to confirm this hypothesis by studying the complete genomic sequences of PhCoVs from different outbreaks and the pathogenicity of IBVs in pheasants to compare and clarify the relationships between PhCoVs and IBVs.

Keywords

Pheasant coronavirus, Infectious bronchitis virus, S1 gene, Complete genome, Adaption and evolution

Nucleocapsid Proteins From Other Swine Enteric Coronaviruses Differentially Modulate PEDV Replication

Virology
Volume 540, 15 January 2020, Pages 45-56

Sungsuwan, S.; Jongkaewwattana, A.; Jaru-Ampornpan, P.

Abstract

Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) share tropism for swine intestinal epithelial cells. Whether mixing of viral components during co-infection alters pathogenic outcomes or viral replication is not known. In this study, we investigated how different coronavirus nucleocapsid (CoV N) proteins interact and affect PEDV replication. We found that PDCoV N and TGEV N can competitively interact with PEDV N. However, the presence of PDCoV or TGEV N led to very different outcomes on PEDV replication. While PDCoV N significantly suppresses PEDV replication, overexpression of TGEV N, like that of PEDV N, increases production of PEDV RNA and virions. Despite partial interchangeability in nucleocapsid oligomerization and viral RNA synthesis, endogenous PEDV N cannot be replaced in the production of infectious PEDV particles. Results from this study give insights into functional compatibilities and evolutionary relationship between CoV viral proteins during viral co-infection and co-evolution.

Keywords

Porcine epidemic diarrhea virus, Swine coronavirus, Nucleocapsid protein

Chapter Four - Structural insights into coronavirus entry

Advances in Virus Research
Volume 105, 2019, Pages 93-116

M. Alejandra Tortorici, and David Veesler

Abstract

Coronaviruses (CoVs) have caused outbreaks of deadly pneumonia in humans since the beginning of the 21st century. The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and was responsible for an epidemic that spread to five continents with a fatality rate of 10% before being contained in 2003 (with additional cases reported in 2004). The Middle-East respiratory syndrome coronavirus (MERS-CoV) emerged in the Arabian Peninsula in 2012 and has caused recurrent outbreaks in humans with a fatality rate of 35%. SARS-CoV and MERS-CoV are zoonotic viruses that crossed the species barrier using bats/palm civets and dromedary camels, respectively. No specific treatments or vaccines have been approved against any of the six human coronaviruses, highlighting the need to investigate the principles governing viral entry and cross-species transmission as well as to prepare for zoonotic outbreaks which are likely to occur due to the large reservoir of CoVs found in mammals and birds. Here, we review our understanding of the infection mechanism used by coronaviruses derived from recent structural and biochemical studies.

Keywords

Coronavirus, Spike glycoprotein, Fusion protein, Membrane fusion, Proteolytic activation, Vaccine design

Human Coronaviruses: General Features

Reference Module in Biomedical Sciences
2019

ARTICLE IN PRESS

Xin Li, Hayes K. H. Luk, Susanna K. P. Lau, Patrick C. Y. Woo

Abstract

Human coronaviruses (HCoVs), including HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, are traditionally known to cause symptoms of common cold with only moderate clinical impact. Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), on the other hand, have strike humans in the past two decades as highly fatal human pathogens leading to considerable mortality and economic loss. This article summaries the updates on the structure, genome organization, replication and clinical features of human coronaviruses. Recent studies also shed light upon the zoonotic origin of emerging human pathogens including SARS-CoV and MERS-CoV, providing insight for future surveillance and intervention.

Keywords

Epidemiology, Genome, Human coronavirus, MERS, Replication, SARS, Structure

Some One Health based control strategies for the Middle East respiratory syndrome coronavirus

One Health
Volume 8, December 2019, 100102

Maged Gomaa Hemida, Abdelmohsen Alnaeem

Abstract

The Middle East respiratory syndrome coronavirus (MERS-CoV) presents an ideal example for developing One Health concepts. Dromedary camels are the principal reservoir for the virus. Infected camels shed the virus in body secretions, particularly nasal discharges. MERS-CoV has the potential to remain active in the environment for some time under optimum conditions of temperature and humidity. This shedding sustains the virus in endemic communities and thus contact with camels is considered a major risk factor for human infection. Reducing virus shedding from camels will have a great positive impact on reducing the human risk of infection. Our main objective is to highlight the potential aspects of reducing virus shedding from camels to the environment, thereby reducing the possibility of human infection. We will focus on the potential roles of camel markets, camel shows, importation, transportation and grazing in the amplification and shedding of the virus, providing some novel concepts for the control approaches for the MERS-CoV.

Keywords

MERS-CoV, One Health, Dromedary camel, Human, Transmission, Shedding

Characterization And Evolution Of The Coronavirus Porcine Epidemic Diarrhoea Virus HLJBY Isolated In China

Transboundary and Emerging Diseases

Huan, ChangChao; Pan, HaoChun; Fu, SiYao; Xu, WeiYin; Gao, QingQing; Wang, XiaoBo; Gao, Song; Chen, ChangHai; Liu, XiuFan

Abstract

A strain of porcine epidemic diarrhoea virus (PEDV), namely HLJBY, was isolated in Heilongjiang province, China. To provide insight into the understanding of the phylogenetic and the current epidemiological status of PEDV, PEDV HLJBY was compared with CV777 and other PEDV strains deposited in the GenBank. The homology between the entire genomic nucleotide sequences of PEDV HLJBY and CV777 was 97.7%. The homology of M gene was the highest (99.0%). However, the homology of ORF3 gene was 97.7%, and protein of ORF3 was 90.1%. In addition, HLJBY showed the highest nucleotide identity (99.9%) with PEDV-SX/China/2017 strain and lowest similarity (91.2%) to PEDV/Belgorod/dom/2008 strain. We analysed the changes in S gene and its protein of PEDV HLJBY with 65 historic PEDV strains. The highest nucleotide identity was 99.9% compared with PEDV-SX/China/2017 strain, and the lowest nucleotide identity was 60.0% compared with PEDV/Belgorod/dom/2008 strain. The length of deduced amino acid sequences of S proteins varied from 1,372 to 1,390 amino acids (aa). Compared with most aa sequences of S proteins, HLJBY exhibited 5 aa deletions (position 55, 59-61, 144). Analysis and comparison of open reading frame 3 (ORF3) proteins between HLJBY strain and other PEDV strains were also focused in this study. We revealed that the length of deduced amino acid sequences of ORF3 proteins was 80-224 aa among tested strains and the identity of HLJBY ORF3 amino acids with other PEDV strains was 71.4%-98.9%. ORF3 protein of both HLJBY strain and PEDV-SX/China/2017 strain consists of 91 aa, with 133 aa deletions at their C' end in relation to the other tested PEDV strains. The phylogenetic tree based on different proteins or genes resulted in different phylogenetic groups. For pathogenicity evaluation of PEDV HLJBY strain, colostrum deprivation piglets were challenged with PEDV HLJBY, and PEDV reference strain CV777 as a control, the results showed that animals challenged with either of these PEDV strains developed diarrhoea, and histopathological examination of small intestines of challenged animals showed acute viral enteritis with villous atrophy in either PEDV HLJBY-P10 or PEDV CV777-P8 inoculated piglets.

Keywords

genomic sequence, HLJBY strain, open reading frame 3, phylogenetic analysis, porcine epidemic diarrhoea virus, S protein

Changes in infection control policies and advancing infection control advanced practice nurse education in the Republic of Korea

AJIC - American Journal of Infection Control
Volume 48, Issue 2, Pages 204-206

Choi, J. S.; Kim, K. M..

Abstract

After the Middle East respiratory syndrome outbreak of 2015, the Korean government became the payer for infection control (IC) and prevention when hospitals developed IC offices and appointed IC doctors and IC advanced practice nurses. The goal was to enhance IC for all hospitalized patients to prevent the occurrence and spread of infection among them. Measures resulted in increased demand for IC personnel, especially IC advanced practice nurses. This study addressed changes in Korea's IC policies and their impact on the IC advanced practice nursing education program.

Keywords

Infection control, Nurse, Education

A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry

Journal of Virological Methods
Volume 265, March 2019, Pages 77-83

Osnat Rosen, Leo Li-Ying Chan, Olubukola M. Abiona, Portia Gough, Lingshu Wang, Wei Shi, Yi Zhang, Nianshuang Wang, Wing-Pui Kong, Jason S. McLellan, Barney S. Graham, Kizzmekia S. Corbett

Abstract

The emergence of new pathogens, such as Middle East respiratory syndrome coronavirus (MERS-CoV), poses serious challenges to global public health and highlights the urgent need for methods to rapidly identify and characterize potential therapeutic or prevention options, such as neutralizing antibodies. Spike (S) proteins are present on the surface of MERS-CoV virions and mediate viral entry. S is the primary target for MERS-CoV vaccine and antibody development, and it has become increasingly important to understand MERS-CoV antibody binding specificity and function. Commonly used serological methods like ELISA, biolayer interferometry, and flow cytometry are informative, but limited. Here, we demonstrate a high-throughput protein binding inhibition assay using image cytometry. The image cytometry-based high-throughput screening method was developed by selecting a cell type with high DPP4 expression and defining optimal seeding density and protein binding conditions. The ability of monoclonal antibodies to inhibit MERS-CoV S binding was then tested. Binding inhibition results were comparable with those described in previous literature for MERS-CoV spike monomer and showed similar patterns as neutralization results. The coefficient of variation (CV) of our cell-based assay was <10%. The proposed image cytometry method provides an efficient approach for characterizing potential therapeutic antibodies for combating MERS-CoV that compares favorably with current methods. The ability to rapidly determine direct antibody binding to host cells in a high-throughput manner can be applied to study other pathogen-antibody interactions and thus can impact future research on viral pathogens.

Keywords

MERS-CoV, Antibody binding, Inhibition assay, Antibody neutralization, Image cytometry, Celigo

Effect of interferon alpha and cyclosporine treatment separately and in combination on Middle East Respiratory Syndrome Coronavirus (MERS-CoV) replication in a human in-vitro and ex-vivo culture model

Antiviral Research
Volume 155, July 2018, Pages 89-96

H. S. Li, Denise I. T. Kuok, M. C. Cheung, Mandy M. T. Ng, K. C.nNg, Kenrie P.Y.Hui, J. S.mMalik Peiris, Michael C. W. Chan John M. Nicholls

Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has emerged as a coronavirus infection of humans in the past 5 years. Though confined to certain geographical regions of the world, infection has been associated with a case fatality rate of 35%, and this mortality may be higher in ventilated patients. As there are few readily available animal models that accurately mimic human disease, it has been a challenge to ethically determine what optimum treatment strategies can be used for this disease. We used in-vitro and human ex-vivo explant cultures to investigate the effect of two immunomodulatory agents, interferon alpha and cyclosporine, singly and in combination, on MERS-CoV replication. In both culture systems the combined treatment was more effective than either agent used alone in reducing MERS-CoV replication. PCR SuperArray analysis showed that the reduction of virus replication was associated with a greater induction of interferon stimulated genes. As these therapeutic agents are already licensed for clinical use, it may be relevant to investigate their use for therapy of human MERS-CoV infection.

Keywords

Middle East Respiratory Syndrome Coronavirus (MERS-CoV)Type I interferon, Cyclosporine, Ex vivo explants

Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease

Virology
Volume 517, April 2018, Pages 98-107

Madeline G. Douglas, Jacob F. Kocher, Trevor Scobey, Ralph S. Baric, Adam S. Cockrell

Abstract

We recently established a mouse model (288–330+/+) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 106 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 103 and 105 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10–1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease.

Keywords

Coronavirus, MERS-CoV, Middle East respiratory syndrome, Respiratory disease, Acute respiratory distress syndrome, Spike protein

Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study

Biochimica et Biophysica Acta (BBA) - Biomembranes
Volume 1860, Issue 2, February 2018, Pages 335-346

Anirban Ghosh, Dipita Bhattacharyya, Anirban Bhunia

Abstract

In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T55VYVYSRVK63) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis.

Keywords

NMR, SARS CoV, Micelle, NOESY, Paramagnetic relaxation

Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review

Journal of Infection and Public Health
Volume 11, Issue 1, January–February 2018, Pages 9-17

Sabeena Mustafa, Hanan Balkhy, Musa N. Gabere

Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic respiratory virus with mechanisms that may be driven by innate immune responses. Despite the effort of scientific studies related to this virus, Middle East Respiratory Syndrome (MERS) is still a public health concern. MERS-CoV infection has a high mortality rate, and to date, no therapeutic or vaccine has been discovered, that is effective in treating or preventing the disease. In this review, we summarize our understanding of the molecular and biological events of compounds acting as MERS-CoV inhibitors, the outcomes of existing therapeutic options and the various drugs undergoing clinical trials. Currently, several therapeutic options have been employed, such as convalescent plasma (CP), intravenous immunoglobulin (IVIG), monoclonal antibodies and repurposing of existing clinically approved drugs. However, these therapeutic options have drawbacks, thus the need for an alternative approach. The requirement for effective therapeutic treatment has brought the necessity for additional MERS treatments. We suggest that antimicrobial peptides (AMPs) may be used as alternative therapeutic agents against MERS-CoV infection. In addition, we propose the feasibility of developing effective agents by repurposing the existing and clinically approved anti-coronavirus and anti-viral peptide drugs.

Keywords

MERS-CoV, Ribavirin, Interferon, Peptide therapeutics, Convalescent plasma, Intravenous immunoglobin, Antimicrobial peptides


Dynamics of scientific publications on the MERS-CoV outbreaks in Saudi Arabia

Journal of Infection and Public Health
Volume 10, Issue 6, November–December 2017, Pages 702-710

Ali A. Rabaan, Shamsah H. Al-Ahmed, Ali M.Bazzi, and Jaffar A. Al-Tawfiq

Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging disease with a relatively high case fatality rate. Most cases have been reported from Saudi Arabia, and the disease epidemic potential is considered to be limited. However, human–human transmission has occurred, usually in the context of healthcare facility-associated outbreaks. The scientific and medical community depends on timely publication of epidemiological information on emerging diseases during outbreaks to appropriately target public health responses. In this review, we considered the academic response to four MERS CoV outbreaks that occurred in Al-Hasa in 2013, Jeddah in 2014 and Riyadh in 2014 and 2015. We analysed 68 relevant epidemiology articles. For articles for which submission dates were available, six articles were submitted during the course of an outbreak. One article was published within a month of the Al-Hasa outbreak, and one each was accepted during the Jeddah and Riyadh outbreaks. MERS-CoV epidemiology articles were cited more frequently than articles on other subjects in the same journal issues. Thus, most epidemiology articles on MERS-CoV were published with no preferential advantage over other articles. Collaboration of the research community and the scientific publishing industry is needed to facilitate timely publication of emerging infectious diseases.

Keywords

Middle East Respiratory Syndrome Coronavirus, Outbreak, Epidemiology, Publication, Saudi Arabia, MERS-CoV